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ABSTRACT In finite element analysis (FEA), optimizing the storage requirements of the global stiffness matrix and
enhancing the computational efficiency of solving finite element equations are pivotal objectives. To address these goals,
we present a novel method for compressing the storage of the global stiffness matrix, aimed at minimizing memory
consumption and enhancing FEA efficiency. This method leverages the block symmetry of the global stiffness matrix,
hence named the blocked symmetric compressed sparse column (BSCSC) method. We also detail the implementation
scheme of the BSCSC method and the corresponding finite element equation solution method. This approach optimizes
only the global stiffness matrix index, thereby reducing memory requirements without compromising FEA computational
accuracy. We then demonstrate the efficiency and memory savings of the BSCSC method in FEA using 2D and 3D
cantilever beams as examples. In addition, we employ the BSCSC method to an engine connecting rod model to
showcase its superiority in solving complex engineering models. Furthermore, we extend the BSCSC method to
isogeometric analysis and validate its scalability through two examples, achieving up to 66.13% memory reduction and
up to 72.06% decrease in total computation time compared to the traditional compressed sparse column method.

KEYWORDS finite element analysis, global stiffness matrix, blocked symmetric property, memory reduction,
isogeometric analysis

1 Introduction Despite the significant advantages of FEA in simulating

complex engineering problems, achieving accurate results

Finite element analysis (FEA) is widely used in the field
of science and engineering as a numerical simulation
method applied across various domains such as aerospace
[1,2], maritime engineering [3,4], automobile engineering
[5,6], electronics [7], and civil engineering [8]. FEA
breaks down complex structures or physical problems
into a finite number of elements, modeling the
interactions between these elements to represent complex
systems or physical phenomena [9-11]. This method
offers numerous advantages: it can handle irregular
structures, accommodate various boundary and loading
conditions, and effectively solve linear and nonlinear
problems, as well as complex multiphysics problems
[12—-14].
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still require solving large-scale finite element equations
[15]. Thus, the efficiency of problem solving and the
scale of addressable problems depend on how these
equations are stored and solved. At present, three main
strategies are used to manage large-scale FEA. The first
approach involves using an adaptive mesh method, which
refines the mesh in areas with complex boundaries or
significant changes while employing coarser meshes in
other regions to minimize the scale of finite element
equations and computational costs [16,17]. Bellenger and
Coorevits [18] proposed an alternative mesh refinement
criterion, known as the h-adaptive procedure for 3D
plastics problems, which achieves an optimally accurate
grid based on preset parameters such as the number of
elements, CPU time, and memory size. You et al. [19]
introduced an adaptive mesh generation scheme for FEA
of diverse heterogeneous materials. Their results show
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that this method can significantly reduce mesh complexi-
ties and computational resources in heterogeneous
objects, achieving substantial mesh reduction without
compromising quality.

The second approach, which employs the assembly-free
method, greatly reduces the storage requirements for the
global stiffness matrix while ensuring solution accuracy.
Yadav and Suresh [20] proposed the assembly-free
deflated conjugate gradient method for large-scale FEA,
which requires only 3 GB of memory to solve systems
with degrees of freedom (DoFs) on a single GPU.
Prabhune and Suresh [21] proposed an elastoplastic
solver that eliminates the need for assembling stiffness
matrices, addressing the high computational costs
associated with residual stress and deformation prediction
using selective laser melting.

The third approach, utilizing the compression storage
method for the global stiffness matrix, minimizes storage
space demands and enhances solving efficiency. Willcock
and Lumsdaine [22] described two methods for
accelerating the multiplication of a sparse matrix by
compressing the matrix indices, thereby reducing
memory bandwidth requirements during multiplication.
They achieved compression ratios and speedups of up to
30% for various large sparse matrices. Chen et al. [23]
proposed a cell sparse storage scheme that reduces
memory requirements during the finite element equation-
solving process and improves the speed of sparse
matrix—vector multiplication (SpMV) through loop
unrolling. Ribeiro and Ferreira [24] presented an MPI-
based SBS parallel implementation of FEA for coarse-
grain distributed memory architectures, using compressed
data structures for storing stiffness matrices. Kawamura
et al. [25] proposed an improved compressed sparse row
(CSR) and ELLPACK (ELL) method, compressing
continuous indices into two integers using maximum and
minimum values, thereby reducing storage usage and
access processes. When applied to the pwtk matrix, this
method reduced storage space by 26.6% compared to
traditional CSR. Ramirez-Gil etal. [26] proposed a
CPU-GPU implementation that utilizes compressed
sparse column (CSC) storage for the global stiffness
matrix, achieving efficient assembly of stiffness matrices.

Although the methods described above can reduce the
computational costs of FEA, they still have certain
limitations. First, the adaptive grid method uses fine grids
in areas with significant changes in the physical field and
coarse grids in smoother areas, achieving a coupling
between grid point distribution and the physical field to
reduce computational costs [27]. However, it requires a
considerable number of computational resources for grid
generation and adjustment and may sacrifice some
analytical accuracy in coarse grids. Second, the assembly-
free method saves space by not explicitly storing the
global stiffness matrix [28]. However, it inevitably
prolongs the solution time; if the global stiffness matrix

needs to be repeatedly used, the element stiffness matrix
must be recalculated. The stiffness matrix compression
storage method can achieve a balance between storage
space and solution time, improving solution efficiency
while saving storage space. However, current sparse
matrix compression storage methods have not fully
considered the relationship between the positions of
nonzero values in the global stiffness matrix. Therefore,
based on the nonzero values of the finite element stiffness
matrix, we present a new blocked symmetric CSC
(BSCSC) method for storing the global stiffness matrix.
Compared to traditional CSC and CSR methods, the
proposed method reduces memory requirements in FEA
and achieves more efficient SpMV.

The organization of the following text is as follows.
Section 2 introduces the basic theory of FEA and the
assembly of the global stiffness matrix. Section 3
elaborates on the specific scheme of the BSCSC method
and the corresponding algorithmic procedure. In Section
4, we employ a 2D FEA example to verify the
performance of the BSCSC method in storing and
accessing the global stiffness matrix. A 3D FEA example
is also used to verify the feasibility and superiority of the
algorithm in solving large-scale problems. Furthermore,
we apply the presented method to isogeometric analysis
(IGA) and validate the generality and superiority of the
algorithm using a quadratic annulus and an L-shaped
beam in Section 5. Finally, we conclude this study and
outline some perspectives for future work in Section 6.

2 FEA

The storage of the global stiffness matrix is a crucial
factor that affects the efficiency of FEA solutions [20].
To investigate methods for storing the global stiffness
matrix, we describe the basic theory of FEA in solid
mechanics and the process of assembling the global
stiffness matrix in this section.

The expression for the static balance equation for the
general conditions is given by [29]:

KU =F, €))
where K is the global stiffness matrix, which is obtained
by assembling the element stiffness matrix k.. F and U
denote the magnitude of the load and the displacement,
respectively.

k, = f B'DB,dQ, @)
Q

where B, is the strain displacement matrix of the element
e, and D is the solid material elasticity matrix.
For a 2D problem, D is defined as follows [30]:
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where E is the elastic modulus of the material, and v is
the Poisson’s ratio.
The strain matrix B, of the element is

B.=[B B, - B )

where i is the number of nodes of the element e. B; is the
block submatrix of the strain matrix, whose expression is
given below:
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where N, denotes the shape function of the isoparametric
element. In this section, we consider a four-node
quadrilateral element as an example. Thus, the scale of
the strain matrix B, of a four-node element is 3 x 8. The
scale of the element stiffness matrix k, is 8 x 8.

We will illustrate the assembly process of the global
stiffness matrix using a simple finite element mesh as an
example. As shown in Fig. 1, the finite element mesh
contains 4 elements, 9 nodes, and 18 DoFs. The numbers
in the middle of the elements indicate the element
numbering, the numbers near the nodes indicate the node
numbering, and the numbers in parentheses indicate the
DoF numbering. All numbering in this paper starts from
0. The rows and columns are also numbered from 0 when
defining the numbering system. The scale of the global
stiffness matrix is 18 x 18. Figure 1 shows that shared
nodes (1 and 4) and shared DoFs (1, 10, 4, and 13) exist
in the stiffness matrix of elements 0 and 1. The data for
the repeated DoFs are assembled at the same locations in
the global stiffness matrix. Nodes 0 and 2 do not belong
to the same element, so the value at positions (0, 2) and

(2, 0) in the global stiffness matrix is 0. This results in the
inevitable presence of many zeros in the global stiffness
matrix, making it a sparse matrix. Employing sparse
matrix storage methods to store the global stiffness matrix
can effectively save memory and improve efficiency.

3 Implementation of the BSCSC method

In this section, we elaborate on the implementation of the
BSCSC method for storing the global stiffhess matrix and
the corresponding finite element solution algorithm. First,
the foundational principles of the basic sparse matrix
storage method are introduced in Section 3.1. Based on
this, we elaborate on the detailed procedure of the
BSCSC method in Section 3.2. In addition, we describe in
detail the finite element equation solving algorithm based
on BSCSC in Section 3.3.

3.1 Sparse matrix storage algorithm

In the solution of finite element equations, the global
stiffness matrix contains far fewer nonzero values than
zero values, and the zero values are not involved in
arithmetic operations [31]. As a result, compressed
storage of sparse matrices can effectively save memory
space and improve computational efficiency. Typical
matrix compression storage methods include the
coordinate (COO) method, CSC, and CSR [32,33].

The COO method stores only the nonzero values along
with their corresponding row and column indices. A
schematic of this storage format is shown in Fig. 2. When
using the COO method to store the global stiffness
matrix, three vectors, val, row_index, and col index,
need to be established. The length of each vector is of
size N,, where N, denotes the number of nonzero values.

Global stiffness matrix
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Fig. 1

Assembly of the global stiffness matrix.
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val represents the values of the nonzero in the sparse
matrix, row_index stores the row indices of the locations
of the nonzero values, and col_index stores the column
indices of the locations of the nonzero values. Therefore,
the memory space required to store the sparse stiffness
matrix employing the COO method is

MemUsagecoo =4 XN, +4 X N.+8 X N.. (6)

The CSR method utilizes row-wise compressed storage
for the nonzero values of sparse matrices, whereas the
CSC method employs column-wise compressed storage.
Both methods operate similarly, enabling efficient access
to nonzero values in any row or column of the sparse
matrix. As an example, we describe the CSC method,
which is the default storage method used in MATLAB.
The storage format for the CSC method is depicted in

Fig. 3. Assume that the size of a sparse matrix is m X n
and contains N, number of nonzero values. When storing
this sparse matrix, we must set up three vectors of
different sizes, val, row_index, and col ptr. val has
length N, and is utilized to store the values of the nonzero
values of the sparse matrix. row_index has length N, and
is utilized to store the row indices of the locations of the
nonzero values. col_ptr has length n + 1 and is utilized
to store the location of the first nonzero value in each
column of the sparse matrix in the vector val, and
col ptr(n+1]=N.+1. Therefore, the memory space
required to store the sparse stiffness matrix employing the
CSC method is

MemUsagecsc =4X(n+1)+4 XN, +8XN.. @)

- row_index col_index val
0 0 1.42
1.42 0 0 0 10.2 0 1 0 2,98
2 1 5.21
2.98 0 0 3.33 0 0 E 1
4 1 8.65
o [521| o | o o |47 |1 [ 3 | 333
4 3 6.88
0 0 0 0 0 0 4 10.2
o i —
0 8.65 0 6.88 0 4.59 5 4 954
2 5 4.76
0 0 0 0 9.54 | 3.25 -l ]
4 5 4.59
5 5 3.25
Fig. 2 Storage format of the COO method.
row_index val
1.42 0 0 0 10.2 0 0 1.42
1 2.98
2.98 0 0 3.33 0 0 col_ptr —
2 5.21
g 4
o |s21]| o 0 o | 476 5 [ | 865
1 3.33
4 -
0 0 0 0 0 6 4 6.88
4 -
-
g 102
0o | 865 o 688 | o |45 - -
9 o ]
5 _I—> 5 9.54
0 0 0 0 |osa] 325 12 —
2 4.76
4 4.59
5 3.25

Fig. 3 Storage format of the CSC method.
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3.2 BSCSC method

In FEA, the global stiffness matrix K is usually
symmetric and block-structured. Therefore, we only need
to store information from only the upper or lower
triangular part of the matrix, along with details of the
partial blocks, to reconstruct the global stiffness matrix.
We introduce the BSCSC method to fully utilize these
characteristics. This method is based on the concept of
blocking the global stiffness matrix. In a 2D context, the
global stiffness matrix can be divided into four blocks,
whereas in a 3D context, it can be divided into nine
blocks. Therefore, the stored variables can be divided into
vectors of diagonal blocks (val,, row,, and col_ptr,) and
vectors of nondiagonal blocks (val,, row,, and
col_ptr, ). Particularly, vectors row, and row,, are used
to store the row indices of the nonzero values; vectors
col_ptr, and col_ptr, are used to store the position of
the first nonzero value in each column of the sparse
matrix in vectors val, and val,,; and val, and val,, store
the values of the nonzero values of the sparse matrix.

The principle of the BSCSC method is demonstrated
using a 2D FEA problem as an example. We discretize a
2D design domain into 16 rectangular elements, as shown
in Fig. 4. The discretized structure consists of 25 nodes
and 50 DoFs. The numbering methods for elements,
nodes, and DoFs in the finite element mesh are similar to
those shown in Fig. 1. For matrix definition, the rows and
columns are indexed starting from 0. Therefore, the finite
element equations for this discrete design domain can be

where K;; (ij = 0,1,...,49) denotes the elements in the
stiffness matrix K, U; denotes the elements in the
displacement vector U, F; denotes the elements in the
force vector F, i denotes the rows, and j denotes the
columns.

To illustrate the compression of the BSCSC method,
consider node 1 (DoF numbers 1 and 21) in Fig. 4. As
shown in Fig. 5(a), when assembling the global stiffness
matrix K, the elements corresponding to node 1 are
located in rows (columns) 1 and 26. Due to the symmetry
of the global stiffhess matrix K, the rows are symmetrical
with respect to the nonzero values in the columns.
Therefore, we use columns to describe all nonzero values.
According to the properties of the global stiffness matrix,
the nonzero values in columns 1 and 21 are positioned at
indices 0, 1, 2, 5, 6, 7, 25, 26, 27, 30, 31, and 32. The data
at positions 0, 1, 2, 5, 6, and 7 are identical to the data at
positions 25, 26, 27, 30, 31, and 32. Thus, for node 1,
only the data corresponding to positions 0, 1, 2, 5, 6, and
7 need to be stored in the global stiffness matrix K, as
shown in Fig. 5(b).

Therefore, the assembly of the global stiffness matrix
corresponding to Node 1 is as follows.

Step 1. Store the number of nonzero values before the
ith column in the diagonal blocks (denoted as nzg;) in
col_ptry, and in the nondiagonal blocks (denoted as
NZnd;) in col_ptr..

expressed as COl_ptrd = [...,nzdyl,nzd,l +2,...]. (9)
[ Koo Ko Koss  Koso |t Uyl [F,] col_ptry=|...nz1,nz, +06,...]. (10)
Ko K K Kl y, F, Step 2. Store row number of nonzero values row, in
: : : : U; F; diagonal blocks and row number of nonzero values row,,
- |T| : |° innondiagonal blocks.
Kao K Kius Kusso||Uss| | Fos =[..,0,1 11
480 48.1 4848 48.49 U P row, =1[...,0,1,...]. 11
[ Kaop Ko Kioas Kigolt 744 L7401
(8) row,, =1[..,0,1,2,5,6,7,...]. (12)
(0, 25) OC (5, 30) SC (10, 35) 10C (15, 40) 15C (20, 45) 200
0 4 8 12
(1, 26) 1(‘ (6,31)6 | (11,36) 11 | (16,41) 16 | (21,46)21,>
1 5 9 13
(2,27)2 (7,32)7 (12,37) 12 (17,42) 17 (22,47)22
O O O O O
2 6 10 14
(3,28)3 ] (8,33)8 | (13,38) 13 ] (18,43) 18 | (23, 48) 23
(I A4 Y/ A4 \)
3 7 11 15
(4,29) 4L 03990 (14, 39) 141 (19, 44) 199 (24, 49) 240

Fig. 4 2D design domain.
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Nonzero values of node 1

®) - -

[ ) Nonzero values of node 1
required to be stored

Fig. 5 Distribution of nonzero values of the global stiffness matrix K. (a) Nonzero values of node 1; (b) nonzero values of node

1 required to be stored.

Step 3. Store the val, and val,, of nonzero values in
diagonal and nondiagonal blocks, respectively.

valy, =[..., Ko, K15 ..., Kas 26, Kog 265 -] (13)

val,, = [..., Koz, K26, K> 26, Ks .26, Ko 265 K7.265 -] (14)

When applying the Dirichlet boundary condition to the
structure, the diagonal values are set to one, and the
corresponding rows and columns of the global stiffness
matrix are set to zero. These zero values are stored in the
global stiffness matrix to retain its block symmetry. By
contrast, when Neumann boundary conditions are
applied, the global stiffness matrix remains unchanged
and maintains its block symmetry. Thus, the BSCSC
method stores the same amount of data in the diagonal
blocks as it does in the upper triangular portion of the
nondiagonal blocks.

For the two-dimensional example shown in Fig. 4, the
BSCSC method accounts for 676 nonzero values N, in
the global stiffness matrix K. Therefore, we can
determine the memory required to store the global
stiffness matrix K containing 16 elements, as shown in
Table 1.

According to the data in Table 1, the BSCSC method
requires 4176 bytes of storage space. In comparison,
storing the matrix using the CSC format requires 8316
bytes. Recall that MemUsagecsc =4 x (n+ 1) +4 x N, +
8 x N, = 8316. Therefore, the BSCSC method reduces
memory usage by 49.78% compared to the CSC method.
This indicates that the BSCSC method can be more
efficient in terms of memory storage. For the 2D
example, the computational expression for the storage
space required for the global stiffness matrix K is

MemUsageBSCSCJD = IOXNZd+ 12><Nan+9><n+8, (15)

where NZ; is the number of nonzero values of the
diagonal block, and NZ, is the number of stored
elements of the nondiagonal block.

Table 1 Memory required to store the global stiffness matrix K
containing 16 elements

Variable Length Type
col_ptry %n +1=26 int
col_ptryg %n +1=26 int
rowq %nzdﬂ + %n =97 int
rownq NZnpd 25 = 169 int
valy nzqos + %n =194 double
valyg nzpgas = 169 double

For the 3D example, an n x n global stiffness matrix K
can be divided into nine pieces due to the three DoFs x, y,
and z. Therefore, the memory required for the global
stiffness matrix K adopting the BSCSC method is

22
MemUsageBscsch = 14 X NZd + 28 X Nan + ? Xn+ 8.
(16)

3.3 BSCSC-based algorithm for solving finite element
equations

The solution methodologies for finite element equations
can be broadly classified into two categories: direct
solution methods [34] and iterative methods [35]. Direct
solution methods involve factorizing the system of
equations into upper and lower triangular systems,
followed by solving these systems through backward
substitution. Although this method has high computa-
tional complexity, it is primarily used for solving small-
scale equation systems. By contrast, iterative methods
progressively approximate the precise solution of the
equation system by iteratively updating the solution
vector. This approach is extensively used for solving
large-scale linear equation systems. Commonly employed
iterative techniques include the conjugate gradient
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method, Jacobi iterative method, and Gauss—Seidel
method [36]. Notably, the conjugate gradient method is
known for its superior convergence rates, particularly for
systems with symmetric positive definite matrices.
Moreover, by integrating preconditioning methods, such
as Jacobi preconditioning and multigrid methods, the
convergence of the conjugate gradient method is
significantly improved. This combination is referred to as
the preconditioned conjugate gradient (PCG) method.
Consequently, in this investigation, we employ the PCG
method to effectively solve the finite element equation
system. The procedure of this algorithm is shown in
Table 2.

Table 2 PCG method algorithm
Algorithm 1 PCG

Input: global stiffness matrix K, load vector F.

Output: exact iteration solution of displacement vector Uy. Function: U =
PCG(K,U,F).

1. Initialize parameters: maximum iteration maxiter and tolerance o/
2. k= 0// Iteration counter of Function

3. ro = F-SpMV(K,Uy) // Calculating residual

4. po-20 = M™'rg // Using the preconditioner

5. while k < maxiter do

6. =1z [P,\T -SpMV (K, Pk)]_l // Calculating step length
7. Ugs1 = Ux + agpy // Updating solution vector

8. Tk+1 =Tkl —ax - SPMV (K, py) // Updating residual

9. if [[rg41]l/ lIroll < tol // Checking convergence criterion
10. break

11. end

12.  Zks1 = M 'rip1 J/ Updating preconditioner

13. Bk=r, Z+1 Zk+1/ r,TZk // Updating search direction

14, Pyt = zke1 +Bipy

15. k= k+ 1// Updating iteration counter

16. end

17. return Uy

Notably, all iterative methods require the execution of
the SpMV during each iteration, and its speed directly
affects the efficiency of solving the system of linear
equations. The performance of the SpMV is influenced
by how the global stiffness matrix is stored in a
compressed manner. A good storage algorithm should
minimize the SpMV computation time while reducing the
storage requirements to achieve an efficient solution.
Therefore, we develop a BSCSC-based SpMV method
that improves CPU throughput and accelerates the SpMV
process through loop unrolling. The process of the
BSCSC-based SpMV method (for a 2D problem) is
shown in Table 3.

Table 3 Procedure of the BSCSC-based SpMV method
Algorithm 2 BSCSC-based SpMV method (for a 2D problem)

Input: global stiffness matrix K, displacement vector U, dimension of
model dim.

Output: load vector F = SpMV_2d(K,U).
1. m = sizeof(U)/sizeof(double)

2. F = calloc(length, sizeof (double))
3.forj=0tom/2 — 1

4. for i=col ptry[j] to col ptry[j+1]-2

5 Flrowqlil] +=valylilx U[].

6 F[j] +=valq[i]x Ulrowq[i]].

7. Flrowqlil+m/2] +=valy[i+ gapql x U[j+m/2].
8 F[j+m/2] +=valy[i] x Ulrowq[i] +m/2].

9 end for

10.  F[jl+=val4[col ptrog[j+1]1-11xU[/].
11.  for i=col ptryyl[j] to col ptryglj+1]-1
12. Flrowpglil]l +=val4[i] X U[j+m/2].
13. F[j+m/2] +=valyy[i] X Ulrowyg[il].
14.  end for

15. end for

16. return F

4 Numerical examples and discussion

To evaluate the performance of the BSCSC method in
FEA, we present a 2D and a 3D example in this section.
Section 4.1 focuses on evaluating the performance of the
BSCSC method for matrix—vector multiplication. Here,
we compare the solution speed and storage efficiency of
finite element equations for a 2D cantilever beam using
the Jacobi—PCG method with BSCSC and CSC storage
formats. In Section 4.2, we apply the BSCSC method to a
3D cantilever beam to investigate its universality.
Moreover, in Section 4.3, we extend the BSCSC method
to engine connecting rods to verify its excellent
performance in complex structures. All computations are
executed on a CPU Intel® Core™ i7-10700F using a
C/C++ compiler. Besides, all variables are dimensionless
unless otherwise specified.

4.1 FEA of 2D cantilever beam

To demonstrate the superior performance of the BSCSC
method over the CSC method in matrix—vector
multiplication, we use the finite element equation analysis
of a cantilever beam as an example. The analysis domain,
boundary conditions, and loads of the 2D cantilever beam
are shown in Fig. 6. An external load (F = 1) is applied to
the right center point in the negative y-axis direction. The
material properties are modeled with dimensionless
parameters: elasticity modulus (£ = 1) and Poisson’s ratio
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100

T_,x y F

0

200

Fig. 6 Analysis domain, boundary conditions, and loads of the
2D cantilever beam.

(v=20.3).

The FEA mesh size of the 2D cantilever beam is set to
1, and the entire structure is discretized into 20000 four-
node elements. The scale of the corresponding global
stiffness matrix K is 40602 x 40602, with its distribution
shown in Fig. 7. The displacement distribution of the 2D
cantilever beam in the y-axis direction, obtained by the
BSCSC and CSC methods, is shown in Fig. 8. The results
indicate that the displacement distribution obtained by the
BSCSC method matches that of the CSC method, as the
BSCSC method only changes the storage mode while
maintaining the same data as the CSC method. Therefore,
the analysis results of the BSCSC method do not generate
errors.

Figure 9 displays the time and memory required for
conducting FEA on the 2D cantilever beam using BSCSC
and CSC methods. The results indicate that the iteration
time required by the BSCSC method is significantly less

0
2
|
-6

(a) Displacement in y-direction

than that of the CSC method. Specifically, the average
iteration time for the CSC method is 2.521 ms, whereas
that for the BSCSC method is 1.387 ms, representing a
44.98% decrease. In addition, the total solution time and
memory utilization for the global stiffness matrix K using
the CSC method are 5.475 s and 8.436 MB, respectively.
In comparison, the BSCSC method requires 2.034 s and
3.378 MB, representing reductions of 62.58% in total
solution time and 59.95% in memory usage. These results
demonstrate that the presented BSCSC method offers
significant advantages in memory saving and high
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Fig. 7 Nonzero value distribution of the global stiffness matrix
of the 2D cantilever beam.
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Fig. 8 Displacement distribution in the y-direction of the 2D cantilever beam. (a) BSCSC method. (b) CSC method.
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Fig. 9 Time and memory required for conducting FEA on the 2D cantilever beam using BSCSC and CSC methods. (a) Time for
matrix—vector multiplication for different numbers of iteration. (b) Total time and memory required to solve the FEA.
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solving efficiency in FEA.
4.2 FEA of 3D cantilever beam

In this section, we use the 3D cantilever beam as an
example to verify the applicability of the BSCSC method
for FEA of 3D structures. The analysis domain, boundary
conditions, and loads of the 3D cantilever beam are
shown in Fig. 10. An external load (F = 64) is applied at
the upper right corner in the negative z-axis direction. The
material properties are the same as those used for the 2D
cantilever beam.

The minimum FEA mesh size for the 3D cantilever
beam is set to 1, and the entire structure is discretized into

Fig. 10 Analysis domain, boundary conditions, and loads of
the 3D cantilever beam.

(@

Total displacement

16384 eight-node ortho-hexahedral elements. The scale
of the corresponding global stiffness matrix K is 57915 x
57915. The global stiffness matrix contains a total of
2745603 nonzero values, and its distribution is depicted
in Fig. 11. The total displacement distribution of the 3D
cantilever beam as obtained using the BSCSC and CSC
methods are shown in Fig. 12. Similar to the 2D case, the
displacement distributions from both methods are
identical.

Figure 13 shows the time and memory required for

N, = 2745603

Fig. 11 Nonzero value distribution of the global stiffness
matrix of the 3D cantilever beam.
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Fig. 12 Displacement distribution in the z-axis direction of the 3D cantilever beam. (a) BSCSC method. (b) CSC method.
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Fig. 13 Time and memory required for conducting FEA on the 3D cantilever beam using BSCSC and CSC methods. (a) Time for
matrix—vector multiplication for different numbers of iteration. (b) Total time and memory required to solve the FEA.
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conducting FEA on the 3D cantilever beams using both
methods. The CSC method has an average iteration time
of 10.121 ms, whereas the BSCSC method reduces this to
4.276 ms, making 57.75% reduction. Moreover, the total
solution time and memory utilized by the CSC method
for the global stiffness matrix K are 9.222 s and 31.642
MB, respectively. By contrast, the BSCSC method uses
only 2.577 s and 10.717 MB, representing reductions of
72.06% in total solution time and 66.13% in memory
usage. These analytical results demonstrate the feasibility
and superiority of the BSCSC method for large-scale
FEA of 3D cantilever beams.

4.3 FEA of engineering structure

In this section, we use the engine connecting rod model
as an example to validate the BSCSC method’s effec-
tiveness in analyzing complex engineering structures.
Figure 14(a) displays the design domain, boundary
conditions, and applied loads for the engine connecting
rod model, which is subject to an external homogeneous
load F of 10 MPa. The material properties are defined
with an elastic modulus and Poisson’s ratio of £ = 210
GPa and v = 0.3, respectively. Four-node tetrahedral
elements are adopted to discretize the engine connecting
rod model, and the mesh model is shown in Fig. 14(b).
The entire structure comprises 79005 elements and 16873
nodes, with the corresponding global stiffness matrix K
having dimensions of 50619 x 50619. It includes
2008791 nonzero values, as depicted in Fig. 15.

The engine connecting rod undergoes analysis using the
BSCSC and CSC methods. Figure 16 illustrates the
displacement distributions of the engine connecting rod
obtained by both methods. The results indicate that the
displacement distributions in the x, y, and z directions, as
well as the total displacement, are identical for both
methods due to the consistent data storage.

Fig. 14 Engine connecting rod. (a) Analysis domain, boundary
conditions, and loads. (b) Mesh model.

K (56019 x 56019)

N.= 2008791

Fig. 15 Nonzero value distribution of the global stiffness
matrix of the engine connecting rod.

The time and memory requirements for conducting
FEA on the engine connecting rod using both methods
are shown in Fig. 17. The average iteration time for the
CSC method is 5.913 ms, whereas the BSCSC method
achieves this in 3.215 ms, marking a 45.63% reduction.
The CSC method consumes 33.233 s and 23.182 MB of
memory to resolve the global stiffness matrix K, whereas
the BSCSC method reduces these to 10.419 s and 7.917
MB, respectively. Therefore, the BSCSC method
decreases the total solution time by 68.65% and memory
usage by 65.85%. These findings highlight the BSCSC
method’s advantages in memory efficiency and computa-
tional speed for FEA applications.

5 Extensions

As an alternative to traditional FEA, IGA achieves the
unification of geometric and analytical models through
the use of spline basis functions—such as non-uniform
rational B-splines (NURBS) and T-splines—employed in
CAD as shape functions for physical fields [37-39]. This
integration is crucial for engineering design as it
considerably reduces the time from design to analysis,
significantly increasing efficiency. Therefore, exploring
the application of the BSCSC method within IGA is
essential to further enhance analytical efficiency. This
section provides two examples to validate the scalability
of the BSCSC method in IGA. In Section 5.1, we briefly
introduce the IGA method. In Section 5.2, a quadratic
annulus example is used to verify the superiority of the
BSCSC method in IGA. In Section 5.3, an L-shaped
beam example is presented to analyze the performance of
the BSCSC method in IGA across different element
scales.
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5.1 IGA method

IGA leverages the NURBS basis function instead of the
shape function used in traditional FEA for conducting

analysis. The NURBS basis function is based on the B-
spline basis function, which constructs complex curves or
surfaces using node vectors, control point vectors, and
weights. The B-spline basis function is defined by the
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Cox-de Boor recursive equation, as shown as follows
[40]:

_J L if&<é<éin,
Bio(§) = { 0 otherwise, a7
é‘: - fi §i+p+1 - f
Bip = —Bi,pfl —Bi+l,p71 0 5
’ (g) §i+p - §i (§) i §i+p+l - §i+l (f) (p g )

(18)
where ¢; is a knot in the nondecreasing sequence knot
vectors (denoted by E=[£,6,....8,u]), and p
represents the degree of the basis function.

The expression for the NURBS basis function is
obtained by introducing the weighting coefficients w;, as
shown as follows:

B. )
Ni,p &) = ﬂ’

o

2B @w

where n is the number of control points.

Thus, a p-degree NURBS curve C(¢) can be expressed
as a function related to the control point Q; and the
NURBS basis function &, as

(19)

C =) N, &0, (20)
i=1

An NURBS surface can be defined as the product of p-

degree NURBS curves in the ¢-direction and g-degree

NURBS curves in the n-direction. The NURBS surface

can be expressed as

ne

S = Z i N, (ON; (D@,

=1 j=1

(2]

where @, ; is the control points grid in &- and n-directions.
N;, (&) and N,,(n) are the NURBS basis functions
defined in both two directions.

Therefore, the element stiffness matrix k, in FEA is
transformed in IGA as [41]:

k.= [ B'DBIJ 160 = [ B'DBIJIILIQ, (22
[N Q,

where Q, and Q, represent the paracentric domain in
NURBS parametric space E and integration parametric
space E, respectively. J, and J, are the Jacobian
matrices denoting the transformation relation from
NURBS parametric space to the physical space and the
integration parametric space to the NURBS parametric
space, respectively.

For the 2D structure, the knot vector E includes
E =[£,6,....& ] In the &direction and E' = [y,
Mys-vosfyogn] D the n-direction; and the strain—
displacement matrix B is represented as

% 0 . aNlln‘l(.‘ 0
Ox Ox
6N 1 aN nme
B=| 0 TE o 0 Ly
% % aNnmz‘ 6an11€
dy Ox Oy ox

where x and y represent the position parameter
coordinates of the 2D structure. nmc is the product of the
control points in E, i.e., nmc = ne X mc.

The formulas for the Jacobi matrices J, and J, are as
follows

,% Q,

I = % §_§ , (24)
L on Oy |
_a_é‘: @.
| 0¢& OE

J.= a_§ 3_5 , (25)
| o7 o7 |

where & and 7 are the parameters defined in the Gaussian
orthogonal domain.

The assembly of the element stiffness matrix into the
global stiffness matrix in IGA is similar to that in
traditional FEA. However, IGA utilizes high-order
elements, leading to a denser stiffness matrix than that in
traditional FEA. Thus, the global stiffness matrix in IGA
remains blocked and symmetric.

Consider a simple 2D IGA model as an example. The
NURBS parameter space is defined as [0, 0, 0, 0.25, 0.5,
0.75, 1, 1, 1] x [0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1], with
degrees p, ¢ = 2 and weight factor w;; =1. The IGA
model and the distribution of nonzero values are shown in
Fig. 18. Therefore, the BSCSC method can still be
effectively applied to IGA.

5.2 IGA of quadratic annulus

To verify the scalability of the BSCSC method, we apply
it to the IGA method, using the IGA analysis of a
quadratic annulus as an example. The Jacobi PCG
method is used to solve the IGA equations. The analysis
domain, boundary conditions, and loads of the quarter
annulus are shown in Fig. 19. An external uniform load
(F = 1) is applied to the top left corner in the positive
direction of the x-axis. The material properties are
consistent with those specified in Section 4.1.

To obtain more accurate analysis results, we perform
several h-refinements on the circular model, resulting in a
final number of 4096 elements. The global stiffness
matrix K scale is 8712 x 8712. The displacement
distributions in the x-axis direction of the quadratic
annulus obtained by the two stiffness matrix storage
methods are shown in Fig. 20. The results clearly show
that the displacement distribution obtained by the BSCSC
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Fig. 19 Quadratic annulus. (a) Analysis domain, boundary conditions, and loads. (b) Initial control points.
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method is identical to that obtained by the CSC method in
the IGA. This demonstrates that the BSCSC method can
guarantee analytical accuracy in IGA.

Figure 21 illustrates the time and memory requirements
for IGA of the quadratic annulus using the BSCSC and
CSC methods. It includes the time for matrix—vector
multiplication for different iteration numbers and the total
time needed to solve the IGA. According to the results in
Fig. 21(a), the iteration time of the BSCSC method is
significantly lower than that of the CSC method. The
average iteration time of the CSC method is 0.915 ms,
whereas the BSCSC method averages 0.413 ms,
representing a 54.86% reduction in time compared to the
CSC method. The results in Fig. 21(b) show that the total

Displacement in x-direction
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Fig. 20 Displacement distribution in the x-direction of the quadratic annulus. (a) BSCSC method. (b) CSC method.

time and memory utilized by the CSC method for the
global stiffness matrix K are 1.184 s and 4.839 MB;
whereas the BSCSC method uses 0.383 s and 1.797 MB,
respectively. As a result, the total time for solving the
IGA equations is reduced by 67.65%, and the memory
usage of the BSCSC method is reduced by 62.86%
compared to the CSC method. These results demonstrate
that the BSCSC method offers significant advantages in
terms of memory saving and high solution efficiency in
terms of [GA.

5.3 IGA of L-shaped beam

In this section, we analyze an L-shaped beam to further
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verify the efficient performance of the BSCSC method in
IGA across different scales. The analysis domain,
boundary conditions, and loads of the L-shaped beam are
shown in Fig. 22. An external load (F = 1) is uniformly
distributed along the left boundary in the positive
direction of the x-axis. The material properties are the
same as those in Section 4.1.

We apply 5-, 6-, and 7-time h-refinements to the L-
shaped beam, resulting in 2048, 8192, and 32768
elements and corresponding global stiffness matrix scales
of 4488 x 4488, 17160 x 17160, and 67080 x 67080,
respectively. Table 4 shows the displacement distribution
of the L-shaped beam in the x-axis direction obtained by
both methods. The results indicate that the displacement
distributions achieved by the BSCSC method are
identical to those obtained by the CSC method for
different element scales in IGA. This confirms that the
BSCSC method maintains accuracy across different
element scales in IGA.

Figure 23 shows the iteration time required to solve the
IGA of the L-shaped beam for the three element scales.
The results demonstrate that the iteration time of the
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BSCSC method is consistently lower than that of the CSC
method across different element scales. The average
iteration time of the CSC method for solving the three
element scales is 0.451, 1.934, and 7.886 ms. In
comparison, the average iteration time of the BSCSC
method is 0.201, 0.862, and 3.661 ms, representing
reductions of 55.43%, 55.43%, and 53.58%, respectively.
Figure 24 illustrates the total time and memory required
to solve the IGA for the L-shaped beam. The results show
that the total solution time and memory usage for the
global stiffness matrix K are lower for the BSCSC
method compared to the CSC method across different
element scales. Specifically, the total time for the CSC
method to solve the three element scales is 0.561, 4.007,
and 30.616. For the BSCSC method, the times are 0.278,
2.151, and 16.589 s, reducing the total solution time by
50.45%, 46.32%, and 45.82%, respectively. Furthermore,
the CSC method utilizes 2.449, 9.617, and 38.108 MB of
memory for solving the global stiffness matrix K for the
three element scales. Conversely, the BSCSC method
utilizes 0.911, 3.571, and 14.147 MB of memory,
reducing memory usage by 62.80%, 62.87%, and
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Fig. 21 Time and memory required for conducting IGA on the quadratic annulus using BSCSC and CSC methods. (a) Time for
matrix—vector multiplication for different numbers of iteration. (b) Total time and memory required to solve the IGA.
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Fig. 22 L-shaped beam. (a) Analysis domain, boundary conditions, and loads. (b) Initial control points.
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Table 4 Displacement distribution in the x-axis direction of the L-shaped beam under different element scales

Total elements BSCSC method CSC method
2048 Displacement in x-direction Displacement in x-direction
0 0
50 50
100 100
150 150
200 200
8192 Displacement in x-direction Displacement in x-direction
0
50 50
100 100
150 150
200 200
32768 Displacement in x-direction Displacement in x-direction
0 0
50 50
100 100
150 150
200 200
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Fig. 23 Iteration time required to solve the IGA of the L-shaped beam for the three element scales: (a) 2048; (b) 8192; (c) 32768.
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Fig. 24 Total time and memory required to solve the IGA for the L-shaped beam: (a) 2048; (b) 8192; (c) 32768.

62.88%, respectively. The findings above demonstrate the
superiority of the BSCSC method over the conventional
CSC method for IGA across different element scales.

6 Conclusions

In this study, we introduced a novel compressed storage
method for the global stiffness matrix and elaborated on
the corresponding algorithmic procedure for solving finite
element equations. This method fully utilizes the blocked
symmetry property of the global stiffness matrix, thereby
reducing memory utilization and improving the
computational efficiency of FEA. Notably, the BSCSC
method changes the storage format without altering the
numerical values within the global stiffness matrix,
thereby maintaining the computational accuracy of FEA.
To demonstrate the advantages of the BSCSC method in
complex engineering structures, we employed engine
connecting rods. We also extended the application of the
BSCSC method to IGA to ascertain its scalability. By
examining a quadratic annulus and an L-shaped beam, we
verified that the BSCSC method offers comparable
advantages in terms of memory conservation and
efficiency improvements within the IGA domain.
Currently, the BSCSC method addresses linear FEA
problems in serial operations and has not been extended

to nonlinear FEA or parallel computation. Our future
research will focus on two main areas: (1) integrating the
BSCSC method with parallel computing techniques to
solve large-scale finite element equations and (2)
extending the application of the BSCSC method to solve
nonlinear equation within FEA,

addressing more complex engineering challenges.

systems thereby

Nomenclature

Abbreviations

BSCSC Blocked symmetric compressed sparse column
COO Coordinate

CSC Compressed sparse column

CSR Compressed sparse row

DoF Degree of freedom

ELL ELLPACK

FEA Finite element analysis

IGA Isogeometric analysis

NURBS Non-uniform rational B-splines
PCG Preconditioned conjugate gradient
SpMV Sparse matrix—vector multiplication
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Strain displacement matrix of element e

B-spline basis function

Stores the column indices of the locations of the nonzero
values

Store the diagonal blocks position of the first nonzero value
in each column

Store the nondiagonal blocks position of the first nonzero
value in each column

NURBS curve

Solid material elasticity matrix

Elastic modulus of the material

Load magnitude

Jacobian matrices denoting the transformation relation from
NURBS parametric space to the physical space

Jacobian matrices denoting the integration parametric space
to the NURBS parametric space

Element stiffness matrix

Global stiffness matrix

Number of control points in different directions

Number of nonzero values before the ith column in the
diagonal blocks

Number of nonzero values before the ith column in the
nondiagonal blocks

Shape function of the isogeometric element

NURBS basis function of the NURBS curve in different
directions

Number of nonzero values

Number of nonzero values of the diagonal block

Number of nonzero values of the nondiagonal block

Degree of the basis function

Control point

NURBS surface

Stores the row indices of the locations of the nonzero values
Store the diagonal blocks row indices of the nonzero values
in BSCSC

Store the nondiagonal blocks row indices of the nonzero
values in BSCSC

Displacement vector

Stores the values of the nonzero in the sparse matrix

Stores the diagonal blocks values of the nonzero in the
sparse matrix

Stores the nondiagonal blocks values of the nonzero in the
sparse matrix

Nondecreasing sequence knot vector

Eni A knot in the nondecreasing sequence knot vectors in
different directions

v Poisson’s ratio

Q, Paracentric domain in NURBS parametric space

Q. Integration parametric space
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